Exercise 60

Determine whether $f^{\prime}(0)$ exists.

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Solution

Recall that the derivative of f at $x=a$ is defined by

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Plug in $a=0$.

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}}{h} \\
& =\lim _{h \rightarrow 0} h \sin \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin \frac{1}{h}}{\frac{1}{h}}
\end{aligned}
$$

Make the substitution,

$$
u=\frac{1}{h},
$$

in the limit. As h goes to zero, u becomes infinite.

$$
f^{\prime}(0)=\lim _{u \rightarrow \pm \infty} \frac{\sin u}{u}=0
$$

The limit exists, so $f^{\prime}(0)$ exists.

